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This talk builds on three related papers:

Blundell, Kristensen, Matzkin (2011a) "Bounding Quantile Demand
Functions Using Revealed Preference Inequalities"

Blundell and Matzkin (2010) "Conditions for the Existence of Control
Functions in Nonparametric Simultaneous Equations Models"

Matzkin (2010) "Estimation of Nonparametric Models with Simultaneity"

I Focus here is on identification and estimation when there are many
heterogeneous consumers, a finite number of markets (prices) and
non-additive heterogeneity.
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Consumer Problem

Consider choices over a weakly separable subset of G + 1 goods, y1, ...., yG , y0

(p1, p2, ..., pG , I ) prices (for goods 1, ...G ) and total budget, [p, I ]

(ε1, ..., εG ) unobserved heterogeneity (tastes) of the consumer, [ε]

(z1, ..., zK ) observed heterogeneity, [z]

Observed demands are a solution to

Maxy U

(
y1, ..., yG , I −

G

∑
g=1

pg yg , z, ε1, ..., εG

)

Typically dealing with a finite number of markets (prices) and many
(heterogeneous) consumers.
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Consumer Demand

FOC - system of simultaneous equations with nonadditive unobservables

Ug
(
y1, ..., yG , I −∑Gg=1 pg yg , z, ε1, ..., εG

)
U0
(
y1, ..., yG , I −∑Gg=1 pg yg , z, ε1, ..., εG

) = pg for g = 1, ...,G

Demand functions - reduced form system with nonadditive unobservables

Yg = dg (p1, ..., pG , I , z, ε1, ..., εG ) for g = 1, ...,G .

The aim in this research is to use the Revealed Preference inequalities to
place bounds on predicted demands for each consumer [ε, z] for any
p̃1, ..., p̃G , Ĩ ;

also derive results on bounds for infinitessimal changes in p and I .

For each price regime the dg are expansion paths (or Engel curves) for each
heterogeneous consumer of type [ε, z]
Key assumptions will pertain to the dimension and direction of unobserved
heterogeneity ε, and to the specification of observed heterogeneity z.
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Invertibility

The system is invertible, at (p1, ..., pG , I , z) if for any (Y1, ...,YG ) , there
exists a unique value of (ε1, ..., εG ) satisfying the system of equations.

Each unique value of (ε1, ..., εG ) identifies a particular consumer.

Example with G + 1 = 2: (ignoring z for the time being) suppose

U(y1, y0, ε) = v(y1, y0) + w(y1, ε)

subject to p y1 + y0 ≤ I

Assume that the functions v and w are twice continuously differentiable,
strictly increasing and strictly concave, and that ∂2w(y1, ε)/∂y1∂ε > 0.

Then, the demand function for y1 is invertible in ε
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Invertibility

By the Implicit Function Theorem,

y1 = d (p1, I , ε) that solves the first order conditions exists and satisfies for
all p, I , ε,

∂d (p, I , ε)
∂ε

= − w10 (y1, ε)
v11 (y1, I − py1)− 2 v10 (y1, I − py1) p + v00 (y1, I − py1) p2 + w11 (y1, ε)

> 0

and the denominator is < 0 by unique optimization.

Hence, the demand function for y1 is invertible in ε.

Blundell, Kristensen and Matzkin () Multiple Goods January 2012 6 / 24



Invertibility

By the Implicit Function Theorem,

y1 = d (p1, I , ε) that solves the first order conditions exists and satisfies for
all p, I , ε,

∂d (p, I , ε)
∂ε

= − w10 (y1, ε)
v11 (y1, I − py1)− 2 v10 (y1, I − py1) p + v00 (y1, I − py1) p2 + w11 (y1, ε)

> 0

and the denominator is < 0 by unique optimization.

Hence, the demand function for y1 is invertible in ε.

Blundell, Kristensen and Matzkin () Multiple Goods January 2012 6 / 24



Invertibility

By the Implicit Function Theorem,

y1 = d (p1, I , ε) that solves the first order conditions exists and satisfies for
all p, I , ε,

∂d (p, I , ε)
∂ε

= − w10 (y1, ε)
v11 (y1, I − py1)− 2 v10 (y1, I − py1) p + v00 (y1, I − py1) p2 + w11 (y1, ε)

> 0

and the denominator is < 0 by unique optimization.

Hence, the demand function for y1 is invertible in ε.

Blundell, Kristensen and Matzkin () Multiple Goods January 2012 6 / 24



Identification when G+1=2

Assume that d is strictly increasing in ε, over the support of ε, and ε is
distributed independently of (p, I ).

Then, for every p, I , ε,

Fε (ε) = FY |p,I (d (p, I , ε))

where Fε is the cumulative distribution of ε and FY |p,I is the cumulative
distribution of Y given (p, I ) .

Assuming that ε is distributed independently of (p, I ) , the demand function
is strictly increasing in ε, and Fε is strictly increasing at ε,

d
(
p′, I ′, ε

)
− d

(
p̃, Ĩ , ε

)
= F−1Y |(p,I )=(p ′,I ′)

(
FY |(p,I )=(p̃ ,̃I ) (y1)

)
− y1

where y1 is the observed consumption when budget is
(
p̃, Ĩ
)
.
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Implied Restrictions on Demands

If consumer ε satisfies Revealed Preference then the inequalities:

p̃1
(
y ′1 − ỹ1

)
+ p̃0(y

′
0 − ỹ0) ≤ Ĩ ⇒ p′1

(
y ′1 − ỹ1

)
+ p′0(y

′
0 − ỹ0) < I ′

allow us to bound demand on a new budget
(
p̃, Ĩ
)
for each consumer ε,

where y ′1 = d (p
′, I ′, ε) and y ′0 = (I

′ − p′1d (p′, I ′, ε))/p′0.

These inequalities extend naturally to J > 2 price regimes (markets).

BBC (2008) derive the properties of the support set for the unknown
demands and show how to construct improved bounds using variation in
Engel curves for additive heterogeneity.

BKM (2011a) provide inference for these bounds based on RP inequality
constraints with non-separable heterogeneity and quantile Engel curves.

Figures 1 - 2 show how sharp bounds on predicted demands are constructed
under invertibility/ rank invariance assumption.

In this paper we show same set identification results hold for each consumer
of type [ε1, ..., εG ] under RP inequality restrictions

Blundell, Kristensen and Matzkin () Multiple Goods January 2012 8 / 24



Implied Restrictions on Demands

If consumer ε satisfies Revealed Preference then the inequalities:

p̃1
(
y ′1 − ỹ1
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)
+ p′0(y

′
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BKM (2011a) provide inference for these bounds based on RP inequality
constraints with non-separable heterogeneity and quantile Engel curves.

Figures 1 - 2 show how sharp bounds on predicted demands are constructed
under invertibility/ rank invariance assumption.

In this paper we show same set identification results hold for each consumer
of type [ε1, ..., εG ] under RP inequality restrictions
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Results for infinitessimal changes in prices.

We know

∂d (p, I , ε)
∂ (p, I )

= −
[

∂FY |(p,I ) (d (p, I , ε))

∂y

]−1
∂FY |(p,I ) (d (p, I , ε))

∂(p, I )

(Matzkin (1999), Chesher (2003)).

And since each consumer ε satisfies the Integrability Conditions

∂d(p, I , ε)
∂p

≤ − y
(

∂FY |(p,I )(y)

∂y

)−1 (
∂FY |(p,I )(y)

∂I

)

Which allow us to bound the effect of an infinitessimal change in price.
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Estimated bounds on demands

In BKM (2011a) we provide an empirical application for G + 1 = 2.

Derive distribution results for the unrestricted and RP restricted quantile
demand curves (expansion paths) d (p′, I , ε) for each price regime p′.

Show how a valid confidence set can be constructed for the demand bounds
on predicted demands.

I In the estimation, use polynomial splines, 3rd order pol. spline with 5 knots,
with RP restrictions imposed at 100 I -points over the empirical support I .
I Study food demand for the same sub-population of couples with two
children from SE England, 1984-1991, 8 price regimes.

Figures of quantile expansion paths, demand bounds and confidence sets in
Figures 3 and 4.
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Multiple Goods and Conditional Demands

Suppose there is a good y2, that is not separable from y0 and y1.

{y0, y1, y2} now form a non-separable subset of consumption goods

they have to be studied together to derive predictions of demand behavior
under any new price vector.

The conditional demand for good 1, given the consumption of good 2, has
the form:

y1 = c1(p1, Ĩ , y2, ε1)

where Ĩ is the budget allocated to goods 0 and 1, as for d1 in the two good
case.

The inclusion of y2 in the conditional demand for good 1 represents the
non-separability of y2 from [y1 : y0 ].
I As before we assume ε1 is scalar and c1 is strictly increasing in ε1.
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Multiple Goods and Conditional Demands

The exclusion of ε2 from c1 is a strong assumption on preferences.

In our general framework we weaken these preference restrictions

I although at the cost of strengthening assumptions on the specification of
prices and/or demographics.

Likewise p2, and ε2, are exclusive to c2. So that we have:

y1 = c1(p1, Ĩ , y2, ε1)

y2 = c2(p2,
˜̃I , y1, ε2)

Notice that the ε1 and ε2 naturally append to goods 1 and 2 and are
increasing in the conditional demands for each good respectively.

Extends the monotonicity result to conditional demands:

I Permits estimation by QIV.

I Implyies that the ranking of goods on the budget line [y0 : y1 ] is invariant
to y2, (as well as to I and p) even though y2 is non-separable from [y0 : y1 ].
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Commodity Specific Observed Heterogeneity

Mirroring the discussion of ε1 and ε2, we also introduce exclusive observed
heterogeneity z1 and z2.

Conditional demands then take the form:

y1 = c1(p1, Ĩ , y2, z1, ε1)

y2 = c2(p2,
˜̃I , y1, z2, ε2)

corresponding to standard demands

y1 = d1 (p1, p2, I , z1, ε1, z2, ε2)

y2 = d2 (p1, p2, I , z1, ε1, z2, ε2)

We may also wish to group together the heterogeneity terms in some
restricted way, for example

y1 = d1 (p1, p2, I , z1 + ε1, z2 + ε2)

y2 = d2 (p1, p2, I , z1 + ε1, z2 + ε2) .

These restricted specifications will be important in our discussion of
identification and estimation
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Triangular Demands

Suppose preferences are such that [y1, y0 ] form a separable sub-group within
[y1, y0, y2 ]. In this case, utility has the recursive form

U(y0, y1, y2, z1, z2, ε1, ε2) = V (u(y0, y1, z1, ε1), y2, z2, ε2)

so that the MRS between goods y1 and y0 does not depend on y2.

I Note however that the MRS for y2 and y0 does depend on y1.

The conditional demands then take the triangular form:

y1 = c1(p1, Ĩ , z1, ε1)

y2 = c2(p2,
˜̃I , y1, z2, ε2)

I Can relax preference assumptions to allow ε1 to enter c2.

z1 (and p1) is excluded from c2 and could act an instrument for y1 in the
QCF estimation of c2, as in Chesher (2003) and Imbens and Newey (2009).
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Triangular Demands

Blundell and Matzkin (2010) derive the complete set of if and only if
conditions for nonseparable simultaneous equations models that generate
triangular systems and therefore permit estimation by the control function
(QCF) approach.

The BM conditions cover preferences that include the conditional recursive
separability form above.

For example,
V (ε1, ε2, y2) +W (ε1, y1, y2) + y0

e.g.
= (ε1 + ε2) u (y2) + ε1 log (y1 − u (y2)) + y0
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The general G+1>2 case

If demand functions are invertible in (ε1, ..., εG ) , we can write (ε1, ..., εG ) as

ε1 = r1 (y1, ..., yG , p1, ..., pG , I , z1, ...zG )

·
εG = rG (y1, ..., yG , p1, ..., pG , I , z1, ...zG )

Can use the transformation of variables equation to determine identification
(Matzkin (2010))

fY |p,I ,z (y) = f ε (r (y , p, I , z))

∣∣∣∣∂r(y , p, I , z)∂y

∣∣∣∣
As we show, estimation can proceed using the average derivative method of
Matzkin (2010).
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An example of commodity specific characteristics and
discrete prices.

U(y , I − p′y) + V (y , z + ε) and fε primitive functions

Demands given by

argmax
y
{U(y , y0) + V (y , z + ε) | p′y + y0 ≤ I}

Assume  V1,G+1 V1,G+2 · · V1,G+G
· ·

VG ,G+1 VG ,G+2 VG ,G+G


is a P-matrix (e.g. positive semi-definite or with dominant diagonal) ...
examples..
Then, by Gale and Nikaido (1965), the system is invertible: There exist
functions r1, ..., rG such that

ε1 + z1 = r1 (y1, ..., yG , p1, ..., pK , I )

· · ·
εG + zG = rG (y1, ..., yG , p1, ..., pK , I )
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Identification

Constructive identification follows as in Matzkin (2007). Assume

∂fε(ε)
∂ε

= 0 <=> ε = ε∗

The system derived from FOC after inverting is

r(y , p, I ) = ε+ z

Transformation of variables equations for all p, I , y , z

fY |p,I ,z (y) = fε (r(y , p, I )− z)
∣∣∣∣∂r(y , p, I )∂y

∣∣∣∣
Taking derivatives with respect to z

∂fY |p,I ,z (y)

∂z
=

∂fε (r(y , p, I )− z)
∂ε

∣∣∣∣∂r(y , p, I )∂y

∣∣∣∣
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Identification

In
∂fY |p,I ,z (y)

∂z
=

∂fε (r(y , p, I )− z)
∂ε

∣∣∣∣∂r(y , p, I )∂y

∣∣∣∣

Note that
∂fY |p,I ,z (y)

∂z
= 0 ⇒ ∂fε (r(y , p, I )− z)

∂ε
= 0

and
∂fε (r(y , p, I )− z)

∂ε
= 0 ⇒ r(y , p, I )− z = ε∗
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Identification

Fix y , p, I . Find z∗ such that

∂fY |p,I ,z ∗(y)

∂z
= 0

Then,
r(y , p, I ) = ε∗ + z∗

We have then constructive identification of the function r .

Identification of r ⇒ identification of h

∂fY |p,I ,z ∗(y)

∂z
= 0 ⇒ y = h (p, I , ε∗ + z∗)
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Average derivative estimator

∂̂r(y)
∂y

=r̂y (y) =
(
T̂ZZ (y)

)−1
T̂ZY (y)

Elements of T̂ZZ and T̂ZY are average derivative type estimators

T̂yj zk (y) =

(∫ ∂ log f̂y |z (y)

∂yj

∂ log f̂y |z (y)

∂zk
ω(z)dz

)

−
(∫ ∂ log f̂y |z (y)

∂yj
ω(z)dz

)(∫ ∂ log f̂y |z (y)

∂zk
ω(z)dz

)

Powell, Stock, and Stoker (1989), Newey (1994)

Use mode assumption on ε, to recover the level of r at some value of y .
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Empirical example for the multiple good case

Three good model with commodity specific observed heterogeneity

I Food, services and other goods.

Assume that unobserved preference for food exactly matches variation family
size/age composition, and are independent conditional on income (and other
observed heterogeneity).

Similarly, assume unobserved preference for services exactly matches
age/birth cohort of adults.

Extend to an index on z .

I Figure 5....
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Conclusions

I Show conditions for identification and estimation of individual demands in
the two good and the multiple good case with nonadditive/nonseparable
heterogeneity.

I Focus on the case of discrete prices (finite markets) and many
heterogeneous consumers.

I Show how to use restrictions implied by revealed preference / integrability
to bound the distribution of predicted demand at unobserved prices (policy
counterfactual).
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Figure 1a: The distribution of demands across consumers indexed by ‘ε’
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Figure 1b: Monotonicity in ‘ε’ and rank preserving on the budget constraint
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Figure 1c: The quantile expansion path
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Figure 2a: Generating a Support Set with RP for consumer ‘ε’
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Figure 2a: Generating a Support Set with RP for consumer ‘ε’
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Figure 2a: Generating a Support Set with RP for consumer ‘ε’
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Figure 2d. Improving the support set with e-bounds, for consumer ‘ε’
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Figure 2e: The best support set with many price regimes
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Figure 3a. Unrestrcited Quantile Expansion Paths: Food, 1986
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Figure 3b. RP- Restrcited Quantile Expansion Paths: Food, 1986
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Figure 4a: Quantile (RP-Restricted) Bounds on Demand (Median Income, τ=.5 )
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Figure 4b: Quantile (RP-Restricted) Confidence Sets (Median Income, τ=.1 )
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Figure 4c: Quantile (RP-Restricted) Confidence Sets (Median Income, τ=.5 )
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Figure 4d: Quantile (RP-Restricted) Confidence Sets (Median Income, τ=.9 )
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Figure 4e: Quantile (RP-Restricted) Confidence Sets (25% Income, τ=.5 )
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Figure 4f: Quantile (RP-Restricted) Confidence Sets (75% Income, τ=.5 )
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Figure 4a. Relative price data: 1975 to 1999 and price path
1.2

Figure 5. Relative price data: 1975 to 1999 and price path
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Figure 4a: Typical Joint Distribution of log food and log income
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